
Converting the Corpus Query Language
to the Natural Language

Daniela Ryšavá1, Nikol Volková1, Adam Rambousek2

1 Faculty of Arts, Masaryk University
Arne Nováka 1, 602 00 Brno, Czech Republic
399364@mail.muni.cz, 399909@mail.muni.cz

2 Natural Language Processing Centre,
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

rambousek@fi.muni.cz

Abstract. This paper presents the first version of a web application
designed to convert queries in the Corpus Query Language to the natural
language. The purpose of this application is to help users who want to
learn and work with Corpus Query Language, providing tool to find out
the explanation of the CQL query. In the future, when the application
supports more features of CQL, it may be included as a hint in the web
interface of a corpus search engine.

Keywords: Corpus Query Language, CQL, natural language generation,
corpus

1 Introduction to Corpus Query Language

Corpus Query Language (CQL) [1,2] is a formal language that allows you
to search corpus for grammatically complex patterns. This language was
developed at the University of Stuttgart in 1990. Each part of the CQL query
consists of a selected attribute and required value, enclosed in square brackets,
in the form of [attribute="value"]. Apart from the whole word, it is possible
to specify regular expressions as values, using special symbols and wildcards
to substitute various character composition.

Most common are three types of attributes:

– lemma, basic word form, e. g. an infinitive for a verb, a nominative singular
for a noun,

– word, word in the particular form,
– tag, morphological tag, e. g. Czech tags used by the majka tagger [3] k1 for

nouns, c1 for nominatives, nS for singular.

Query may be modified with the exclamation mark to negate the value
query, see Example 1. Users may expand the CQL query with various advanced
features, some of them are explained in Tables 1 and 2.

Aleš Horák, Pavel Rychlý, Adam Rambousek (Eds.): Proceedings of Recent Advances in Slavonic Natural
Language Processing, RASLAN 2015, pp. 43–48, 2015. c○ Tribun EU 2015



44 Daniela Ryšavá, Nikol Volková, Adam Rambousek

Example 1. Query: [word!="dog"]
Interpretation: searched expression is not the word dog

Table 1. Operators

. full stop any character
[] square brackets any token
containing structure containing structure containing the searched expression
within within structure searched expression within structure
<s/> structure = sentence structure markup used with operators
<p/> structure = paragraph containing or within
<doc/> structure = document

Example 2. Query: [lemma="ye.."]
Interpretation: searched expression is a lemma beginning with ye followed by
two characters: year, yelk, yeti. . .

Example 3. Query: <s/> containing ([word="dog"][][lemma="cat"])
Interpretation: searched expression is a sentence containing the word dog
followed by one arbitrary token and the word cat

Example 4. Query: ([lemma="dog"][][lemma="cat"]) within <doc/>
Interpretation: searched expression is the word dog followed by one arbitrary
token and the word cat within a document

Table 2. Quantifiers

* asterisk iteration in range from zero to infinite
+ plus iteration in range from one to infinite
? question mark iteration in range from zero to one
{n} range in braces exactly n iterations
{n,} range in braces iteration in range from n to infinite
{n,m} or {n, m} range in braces iteration in range from n to m

Example 5. Query: [lemma="moo*"]
Interpretation: searched expression is the word mo, moo, mooo. . . (the lemma mo
with arbitrary iteration of the character o)

Example 6. Query: [tag="k5.*"]+
Interpretation: searched expression is the verb occurring at least one time



Converting CQL to the Natural Language 45

Example 7. Query: [lemma="hoo?d"]
Interpretation: searched expression is the lemma hod and hood

Example 8. Query: [lemma="dog"] []{2} [lemma="cat"]
Interpretation: searched expression is the lemma dog and cat with exactly two
arbitrary tokens between them

Example 9. Query: [word="po{2,}r"]
Interpretation: searched expression is the word poor with two or more charac-
ters o

Example 10. Query: [tag="k3.*"] []{0,3} [tag="k1.*"]
Interpretation: searched expression is a pronoun and a noun with no more
tokens between them, or up to three arbitrary tokens between them

2 Converting the query

The application is developed in Python 2 programming language. There are
two ways to run the application, either as the command line script, or the
web application. Both interfaces use the same back-end algorithm to generate
the sentence in natural language. As of now, the application produces Czech
sentences, but it is possible to add support for other languages.

Input CQL query is split to tokens (enclosed in square brackets), while also
detecting any structure operators. In the next step, each token is processed
separately, producing parts of the Czech sentence, taking into account both
the token query, and any quantifiers. Afterwards, the complete sentence is
generated.

The application supports only some features of the CQL and the query has
to follow the standard CQL structure. The attribute of the query needs to be
specified by typing word, lemma or tag and the value (the searched item) has to
be enclosed in double quotation marks, e. g. "dog" or "k1.*nP.*". For example,
the query may follow the form [lemma="dog"] or [tag="k1.*nP.*"].

2.1 Searching for words and lemmas

If users want to search for certain word or lemma, they use the default attribute-
values queries, as seen in Figure 1.

Fig. 1. Searching for words and lemmas.



46 Daniela Ryšavá, Nikol Volková, Adam Rambousek

2.2 Searching for Part of Speech

Users may also search for particular morphological tags. In current version, the
application supports the attributive tagset, used in the ajka/majka morpholog-
ical analyzer3. If users want to specify combination of morphological tags, they
have to enter the tags in the same order that is produced by the morphological
analyzer. See Figure 2 for an example.

Fig. 2. Searching for POS.

2.3 Specifying number of tokens

It is possible to set the number of repeats for any token in the query, e. g. which
parts of the query are required or optional. Number of tokens can be specified
by quantifiers, i. e. *, ?, +, {n}, {n,}, {n,m} (see Table 2 for the list of quantifiers,
and Figure 3 for an example).

Fig. 3. Searching number of tokens.

2.4 Searching in structures

If the corpus has sentence, paragraph or document markup, it is possible to
take these into consideration when writing CQL queries. Operators s, p and doc
are valid structures and users are able to match tokens in such structures. The
first type of the structure is specified with operator containing, and matches all
structures of your choice containing e. g. an adjective followed by noun. The
other type is specified with operator within, and matches a number of tokens
within a structure of your choice. See Figure 4 for examples.

3 For a complete list of tags, see http://nlp.fi.muni.cz/projekty/ajka/tags.pdf



Converting CQL to the Natural Language 47

Fig. 4. Searching in structures.

2.5 Searching for complex patterns

If the value of a query includes any characters, other than letters or numbers,
the query is evaluated as a regular expression. However, the current version
of the application does not evaluate the value of a regular expression, because
it is a complex tasks by itself. On the other hand, some frequent query types
are detected. The application is able to detect the pattern .* in the CQL value,
and from the position of this pattern in the query string decides whether the
users are searching for words/lemmas starting with, ending with, or containing
particular characters.

Fig. 5. Searching for complex patterns.

3 Conclusion and future work

The application is able to convert several frequent types of CQL queries to an
explanation in Czech, even more advanced features like quantifiers or structure
queries. Web application is available for users at http://nlp.fi.muni.cz/
projekty/cql2cz/.

However, the application does not support all of the advanced CQL fea-
tures, and current version has some issues with complex queries. We plan to
address the issues and extend the CQL support, in future versions. In the next
version, following areas will be covered.

3.1 The sequence of morphological categories

When users specify morphological tags with regular expressions, like "k1.*c4",
only the tags (k1 and c4) are detected, and the rest of the query is stripped.
However, the full regular expression may hold important information, thus
need to be examined by the application more closely.



48 Daniela Ryšavá, Nikol Volková, Adam Rambousek

3.2 Regular expressions inside value

Currently, only the pattern .* is detected in the regular expressions. In future
versions, the application will be able to detect other types of regular expressions
correctly.

3.3 Complex patterns

The application should be able to detect and process more complex query
structure, for example nested queries like [word="haunt" and tag="k1.*"].

Acknowledgement This work has been partly supported by the Masaryk
University within the project Čeština v jednotě synchronie a diachronie – 2015
(MUNI/A/1165/2014) and by the Ministry of Education of CR within the
LINDAT-Clarin project LM2010013.

References

1. Evert, S.: The CQP query language tutorial. (2005)
2. Sketch Engine, Corpus Querying: https://www.sketchengine.co.uk/

xdocumentation/wiki/SkE/CorpusQuerying
3. Jakubíček, M., Kovář, V., and Šmerk, P.: Czech Morphological Tagset Revisited. In

Proceedings of Recent Advances in Slavonic Natural Language Processing (2011) 29–42


